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SINGULARITIES IN FLOWS WITH A FREE BOUNDARY* 

A.S. SAVIN 

A method of determining the shape of the free surface of a planar 
stationary flow of a ponderable ideal fluid which flows around point 
hydrodynamic singularities is proposed. A Cauchy problem is formulated 
for finding the profile of such a flow. The self-induced motion of a 
point vortex under the free surface of an ideal ponderous fluid is 
considered. 

1. The equatCon of the profiZe of a capillary-gravitationa wave of smaZ1 amplitude on 
the surface of a stationary fZow. In the case of a stationary flow having point singularities, 
a method was proposed in /l/ for finding the shape of the free surface when it deviates 
slightly from the unperturbed position. The solution obtained by this method has the form 
of an improper integral with a variable limit. For example, in the case of the flow round 
a vortex of intensity J? located at a depth h by a flow having a velocity -V at positive 
infinity, the following expression /2/ can be obtained for the shape of the free surface: 

s (5) = --& 1 rcosvb+-~sinvcr-., & (_ +) 

m 

A still more complex integral representation for the function s(r) can be obtained 
by this method when account is taken of capillary effects /3/. 

Below, we obtain an ordinary differential equation which is satisfied by the function 

s (5) and we formulate a Cauchy problem for determining it. 
Let us consider a planar stationary flow with a velocity -V at z = m. Let its unper- 

turbed free surface coincide with the x-axis. Let us pick out the principal component of the 
flow by putting its complex potential equal to W = o - Vz, where 0 = cp + i$, 2 = 5 + iy. 
Linearized boundary conditions /3/ 

s (5) = (V/g) CPX (.? 0) + Ial(pg)l S" (x)7 9 (I, 0) = FLY (I) (1.1) 

(a is the surface tension and p is the density of the fluid) can be written in the form of a 
single condition for the complex velocity U (2) = w' (2) on the x-axis: 

Im@U" + iU' -vlJ) = 0 (p = ai(pVz)) (1.2) 

Here and subsequently, a derivative of a function with respect to its argument is 
indicated by a prime. 

If the flow passes around a unique singularity at the point .zo = -ti, the complex 
velocity has the form U(z) = C/(z + ih)" + g(z), n = 1,2, . . . . where the function g(z) is 
analytic over the whole of the domain of the flow. Following the method used in /l/, let us 
consider the function fJz)= glJ’+ iU’-VU which, as a consequence of condition (1.2), can 
be analytically extended according to the Schwartz principle into the upper half plane. Then, 

f (z) = BF,” + iF_’ - vF+, F+ = Cl(z + ih)” + (7/(z - ih)” 

in the whole of the complex plane. 
It can be directly verified that 
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BV"" + (1 - 2flY) U" + v"lJ = Bf" - if' - vf 

It follows from the second boundary condition (1.1) that 
(1.3) 

R (5) I S’ (2) = Vel$, (z, 0) = V-‘ImU ly4 

which, when account is taken of (1.3), enables to write the equality 

P2R"" + (1 - 2pv) R" + v2R = V--’ Im @f" - if' - vf) lIIzO 

By integrating both sides of this equation with respect to x and allowing for the fact that 
Imf=O and Imf" = 0 when Y = 0, we,obtain the equation 

B'S",, + (1 - 2gv) S" + 9s = -V-If (I) (1.4) 

in which the integration constant is omitted since it has no effect on the unique establish- 
ment of S(x), which is only possible when additional conditions are specified. Let us 
formulate such conditions for the two important limiting cases of Eq.(1.4). 

Suppose we are dealing with the flow of a fluid in which the action of capillary forces 
can be neglected. In this case, we put OL = 0, after which (1.4) becomes 

S” + v*S = -V-‘f, (rc), fl (I) = iF_’ (z) - vF+ (5) 

We know /3/ that gravitational waves develop behind a singularity 
upstream from it. The unique solution of Eq.(1.5) which satisfies the 

S(z)=-+[ffl(t)sinv(x-_)dt 
m 

(1.5) 

and not a long way 
radiation condition 

(1.6) 

is the same as the solution of the problem obtained by the well-known method /l/. 
In carrying out actual calculations, it is more convenient to deal not with the radiation 

conditions but with the Cauchy problem, which we shall now formulate. From relation (1.6) 
it is possible to find 

s(O)==-+ &$ [ {e-vh [Ei (vh) + in]) 1 
s.(l))++"l'C[+- p-1 &,;ihf;rri. Wh WW) + in])]} 

(1.7) 

Eq.(1.5) with conditions (1.7) is the Cauchy problem for determining the profile of a 
purely gravitational wave on the surface of a stationary flow. 

In particular, the problem 

S" + v*s = Irl(nV)l 1(x2 - hZ)/(z2 f V) - vhl/(z? + h2) 

S (0) = - W/(nV)l exp (-vh) Ei (vh), S' (0) = (h/V) exp (-vh) 

corresponds to the flow round a vortex of intensity r while the Q-problem 

S" + vzs = [Q/(nV)ls [2h/(r2 + h*) + yli(s2 + P) 

S (0) = (O/v) erp (-vh), S’ (0) = [Q/(nv)l (v exp (-vh) Ei (vh) - I//Z) 

corresponds to the flow round a source of copiousness. 
Now let capillarity play a fundamental role. This means that one may put v = 0 in 

Eq.(1.4): 
B’S”” + S” = -V-‘f, (z), fz (5) = /3F+” (z) + iF_’ (.z) (1.8) 

Unlike gravitational waves, capillary waves develop towards the flow /3/. We therefore 
require that the function S(z) with all of its derivatives should tend to zero as 5--f-00. 
If, in Eq.(1.8), one takes P E S” as the new function, then its unique solution, which 
satisfies the designated radiation condition, will be 

p = -+ [ fa(t) sin?& 

-m 
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From this expression we find the initial conditions for determining P 

It is difficult, in the general case to formulate a Cauchy problem similar to that which 
has been considered starting out just from the radiation conditions. However, it is possible 
to make use of an integral representation of the function S(r) in order to find the values 
of 5, S’,S” and S"' at any fixed point such as 5 = 0, for example, and thereby obtain 
the Cauchy data for the solution of Eg.(1.4). So, in the case of the flow round a point 
vortex of intensity r, a corresponding integral representation /3/ enables one to find 

S (0) = B Ie~hEi(uh)L+ S' (0) = nB [~e+~‘l_’ 

S” (0) = B [a/h - o*e-ahEi (oh\)_+, S"' (0) = --nB [03e-Qhl_' 

(B = rl(nVyrl - 4&J), rcft (o))_+ = cp (6,) - Q1 (o_),u* = 

(1 is 1/i - 40+(2~) 

2. Setfinduced motion of a vortex under a free surface. Let a single point vortex of 
intensity r be located at a certain point 20 = 50 + iy, of a bounded occupied by an ideal 
fluid. This means that the complex potential of the flow has the form W = 4, + iY = [I'/(2ni)1 
In (2 - Q) + p (2, & where the function p&1) is analytic with respect to s over the whole 
of the flow domain. The occurrence of the term p {z,t) in the expression for the complex 
potential is associated with the presence of boundaries (in an unbounded medium p=O) in 
the fluid. Since the point vortex does not act in its own right and, furthermore, is "frozen" 
into the medium, its motion is realized in accordance with the equation df,ldt = p. (zO, t). 

Let us now formulate theproblem ofdescribing, in the small-wave approximation, the 
motion of a point vortex under the free surface of an infinitely deep fluid located in a 
uniform gravitational field. Let us put p (2, t) = Iri(2ni)l In (z - f,) + 0 (z, t), then W = W, + 
o, where W, = Q. 4 iYy, = E$hi)l In [(z - zo) (z - &,)I and the function o = tp + iq is analytic 
everywhere in the flow domain. 

A vortex of small intensity located at a sufficient depth will generate surface waves 
of small amplitude. In this case, the boundary conditions on the x-axis have the form /3/ 

OD, + gs = 0, CD, = S, (2.1) 

(S = s (z, t) is the deviation of the free surface from its unperturbed position .y = 0). The 
condition I3f 

Qfrt + @%/ IzJ=o = 0 (2.2) 

is a consequence of (2.1). 
If the state of the free surface and the position of the vortex at the initial instant 

of time t = 0 are specified 

s (z, 0) = so (x), S, (z, 0) = S,(5), 20 (0) = --ih (2.3) 

then, when account is taken of the fact that the relationships CD, = Re W,= Re {[r/(ni)lIn jz - 
IO 1 ) = 0, m,/at = 0 and 

&?,lay = -Im W,’ = (r/n) (x - z,)iI(z - so)* + y,v 

hold on the x-axis, we get from (2.1)-(2.3) the problem for the velocity potential 'p 

Acp =O 
qtt + gcp, tuzO = - (0s) (Z - +,)W - Z*)Z -t- Y,*I 

mr lr=o,t=o = s, (x) - (f/x) +W -I- P), 'Pt j@**1=0 = -gs, (r) 

The form 

(2.4) 

(2.5) 
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exp(]h]y+iAz)dL 

s(% (A) and o,(h) are the Fourier images of s,(z) and s, (z) respectively). May be 
ascribed to the solution of (2.4) obtained using a Fourier transformation. 

The expression for the complex potential of the whole flow follows from (2.5) 

W(z,t) = [r/(24] (ln[z- zo(t)J -1n Iz-20 (t)]) - P-6) -t - 
r 

-ii SI '+@xp(ia[z, (E)-z])cos [l/s(t---)1d5dh. +x(2,0 
00 

where x (2, f) is a function which is analytic in the domain of the flow and the real part 
of this function is 8 (5, y,t). 

The first term on the right-hand side of (2.6) is the complex potential of the flow 
which is created by the vortex being considered and by a "mirror" vortex with respect to the 
x-axis of intensity -p. The second term is associated with the motion of the free surface, 
which is caused by the vortex and the third term with the development of the initial per- 
turbations of the free surface. 

If, at the initial instant of time, the free surface was unperturbed, that is, it 
coincided with the x-axis and did not move, then 

(2.7) 

~0s [I/i% (t - 814 da} 

Since the small-wave approximation is being considered, the effect of the "mirror" 
vortex dominates and the action of the free surface is of a corrective nature. As a con- 
sequence of this, an approximate law for the motion of the vortex can be found by putting 
z0 (&) = FE - ih, V = -_/(4nh) in the integrand of (2.7) which corresponds to the motion of a 
vortex when the free surface is "frozen", that is, in the case of a solid wall. The integration 
with respect to E in (2.7) is then carried out exactly, which yields 

t dE y,(t)=--h+1,, so(t) = -&s---I, Yo (8 
0 

m 

Ii = & 5 hex~(--Ah)~~~(p+) + F, (IL-)I~~ 
n 

(F, (p) = (1 - cos pt)/p2, F,(p) = (pt - sin pt)/p’, p* = AV I ?%I 

Fig.1 Fig.2 

The trajectories of vortices of an intensity F = -0.1~ ma/s located at the initial 
instant of time at depths of 9, 10, 11 and 12 cm, found according to these formula using a 
digital computer, are shown in Fig.1. The trajectories of vortices with intensities of -O.O8n, 
-0.20n and -O.'l%c m'/s located at a depth of 10 cm at the initial instant of time are 
shown in Fig.2 (curves 1, 2 and 3 respectively). The points which have been picked out on 
the curves mark the positions of the vortices after each second. It can be seen that, after 
the oscillations, the greater the amplitude, the smaller the initial depth and the greater 
the intensity and the vortex reaches a state of monotonic and extremely slow leviation. 
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WAVE MOTIONS CAUSED BY A SOURCE IN A FLUID OF VARIABLE DEPTH* 

A.N. BESTDZHEVA and A.A. DORFMAN 

Solutions of the problem of the wave motion produced by a pulsed source 
moving in a fluid over an inclined bottom are obtained. An asymptotic 
analysis of the solution is carried out and the structures of the wave 
fields are investigated. 

The motion of a source in a fluid of constant depth has been quite thoroughly studied 
by the successive application of integral transforms and the stationary phase method /l-3/. 
An asymptotic theory of wave motions has been developed /4/ for small variations of a base of 
arbitrary form. This is based on the use of the apparatus of pseudodifferential operators 
and the reduction of the problem to the solution of Hamiltonian systems. Only some special 
cases have been considered when there are significant changes in depth (the fluid is bounded 
by a planar inclined bottom): the problem has been formulated of the structure of the wave 
wake behind a moving source and a method of solving it has been pointed out in /5/, and a 
solution of the planar problem for a pulsating source has been constructed in /6/. 

1. Let a source of intensity b, pulsating at a frequency o and moving at a velocity c 
parallel to the shore line be placed in a fluid which occupies a wedge-shaped domain at the 
instant of time t = 0 (Fig.1). 

Fig.1 

We shall write the equations, the boundary conditions and the initial conditions of the 
problem within the framework of linear dispersion theory /2, 7/ 
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